

W & Z Physics at the Tevatron

Physics in Collision Annecy: June 27 2007

Mark Lancaster
University College London

Motivation

- Precisely calculated at (N)NLO
- Standard candles for calibration
- Backgrounds to new physics

Cross Sections / Overview

Physics In Collision : Annecy : 27 June 2007

Mark Lancaster: W & Z Physics

Event Yields

W yield is now approaching the Z yield at LEP.

Many results are now surpassing the precision achieved at LEP(2).

W & Z Cross Sections

Precisely predicted to 2-3% at NNLO ~ exp. systematic (-lumi)

Measurements are now dominated by uncertainty in luminosity ~ 6%.

W cross section provides viable (integrated) luminosity measurement

3rd Generation: Tau Channel

- test 3rd generation lepton universality
- benchmark for searches (especially MSSM Higgs).

Experimentally challenging but good SM agreement at ~ 10% level

Lepton universality verified to 8%

Physics In Collision : Annecy : 27 June 2007 Mark Lancaster : W & Z Physics

3rd Generation : Z → bb

- first observation at a hadron collider

Signal: 5674 ± 448

- important measurement to calibrate b-jet energy scale & resolution (h, top).

W+V, Z+V Cross Sections

The new SM benchmarks (& backgrounds) for our search programme. Now all measured with 1fb⁻¹

Highlights:

- Observation of radiation zero in Wγ
- Surpassing of LEP limits for $Z_{\gamma\gamma}$, ZZ_{γ} couplings from Z_{γ} study
- First observation of WZ
- Hints of ZZ

W_γ: Radiation Zero

Amplitude is zero for $cos(\theta_{CM})$ = -(1 + 2Q_d) but use η_{γ} - η_{lepton} not θ_{CM}

Z_γ: Improved TGC Limits

h₄₀ limits now surpass LEP

First Observation of WZ

WZ Candidate Transverse Mass

WZ Candidate Dilepton Invariant Mass

WZ Cross Section Measurement

Made possible due to significant improvements in lepton acceptance

 $\sigma(p\bar{p} \to WZ) = 5.0^{+1.8}_{-1.6} \text{pb} \text{ (Theory } = 3.7 \pm 0.3 \text{ pb)}$

WZ TGCs though not yet competitive with LEP2

First Hints Of ZZ Signal

1 eeμμ candidate Expected ~ 1.5

 σ < 4.3 pb (95% CL)

First Hints Of ZZ Signal

CDF has combined 4I & IIvv channel for greater significance

1 ee $\mu\mu$ candidate; expected ~ 2.5

$$\sigma(ZZ) = 0.75^{+0.71}_{-0.54} \text{ pb}$$

Angular Distributions: AFB

- angular distributions allow constraints on Parton Distribution Functions and anomalous quark couplings to be made

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

A_{FB} Above Z Pole

- statistics limited but ultimately sensitivity to Z' beyond SM.

W Charge Asymmetry

W⁺ boosted in proton direction
 since u quark momentum > d quark

 we measure a lepton charge asymmetry

W Charge Asymmetry

Improved constraints if split data by E_T

Ultimately best constraints by measuring W charge asymmetry using weighted iterative estimate of W rapidity.

Drell Yan Rapidity

 Z boson rapidity well measured from decay leptons

$$Y_Z = 0.5 \ln \left(\frac{x_p}{x_{\overline{p}}}\right) \begin{array}{l} \text{High Y}_{\mathbf{Z}} \\ \text{Probes one high x} \\ \text{\& one low x parton} \end{array}$$

Statistics limited but with data in hand expect reduced PDF uncertainties at high-x

Drell Yan P_T

PDFs determine boson rapidity

W,Z pT determined by QCD radiation

QCD radiation at low p_T is non-perturbative and requires data to constrain an ad-hoc intrinsic p_T parameterisation.

Important ingredient in W mass analysis

W Mass Motivation

Summer 2006 - LEP Preliminary

W mass uncertainty is the limiting uncertainty on constraining the Higgs mass.

Need $\Delta m_w \sim 11$ MeV (0.014%) for top & W to have equal weight in m_H constraint

W Mass Strategy

Lepton Momentum

- calibrate from J/ψ and upsilons
- cross check with $Z \rightarrow \mu\mu$

Lepton Energy

- calibrate using E/p
- cross check with $Z \rightarrow ee$

Backgrounds

- reduce below 1% by cuts

$$M_T = \sqrt{2p_T^l p_T^{\nu} (1 - \cos \phi_{l\nu})}$$

$$ec{ extstyle p}_{ extstyle T}^{ extstyle
u} = -(ec{ extstyle U} + ec{ extstyle p}_{ extstyle T}^{ extstyle l})$$

Mw: Momentum Calibration

Key ingredients

- material map : amount and type (CDF has $\sim 20\% X_0$)
- tracker alignment
 - use cosmics & W events
 - use E/p from low energy inclusive electron events

Mw: Momentum Calibration

Scales consistent between Z, J/Ψ, Y

Mw: Energy Calibration

Three error sources:

- statistical + mom scale
- material before calorimeter
- response of calorimeter vs E

Mz (from E/p) - Mz (PDG) = 3 ± 67 (stat) MeV

Fit scale in peak region

 $\Delta Mw \sim 22 \text{ (stat)} \oplus 11 \text{ (material)} \oplus 17 \text{ (p-scale)} = 30 \text{ MeV}$

Mw: QCD/QED Uncertainties

- QCD uncertainties from PDFs and W p_T

- QED uncertainties from approximations in $O(\alpha^2)$ treatment $\Delta Mw = 11 \text{ MeV}$

Mw: Recoil Model

Neutrino p_T is inferred from lepton p_T and "rest" of the event

"rest": QCD radiation "recoiling" against W; overlapping min bias; underlying event

Mw: CDF Result

CDF II	prelim	inary	

L = 200 pb

ODF ii preiiiiiilary			L - 200 pb	GeV
m _⊤ Uncertainty [MeV]	Electrons	Muons	Commor	
Lepton Scale	30	17	17	ıts/
Lepton Resolution	9	3	0	events
Recoil Scale	9	9	9	
Recoil Resolution	7	7	7	
u _∥ Efficiency	3	1	0	
Lepton Removal	8	5	5	
Backgrounds	8	9	0	
$p_T(W)$	3	3	3	
PDF	11	11	11	
QED	11	12	11	
Total Systematic	39	27	26	L
Statistical	48	54	0	
Total	62	60	26	e Se

 $\int L \, dt \approx 200 \, \text{pb}^{-1}$ **CDF II preliminary** 1000 $M_{\rm W} = (80349 \pm 54_{\rm stat}) \text{ MeV}$ 500 χ^2 /dof = 59 / 48 70 100 m_T(μν) (GeV) $L dt \approx 200 \text{ pb}^{-1}$ **CDF II preliminary**

1500 1000 $M_{\rm W} = (80493 \pm 48_{\rm stat}) \, {\rm MeV}$ 500 χ^2 /dof = 86 / 48 100 m_T(e_V) (GeV) 70 80 90

 $M_W = 80413 \pm 48 \text{ MeV}$

events / 0.5 GeV

Γw

- the high m_T tail contains information on the W boson width

Understanding of resolutions & backgrounds critical

1

Γw

CDF II Preliminary (350 pb⁻¹)

constrain non-gaussian tails in tracking resolution from E/p

Γw

CDF Run II Preliminary (350 pb-1)

	$\Delta\Gamma_{\scriptscriptstyle{W}}$ [MeV]		
	Electrons	Muons	Common
Lepton Scale	21	17	12
Lepton Resolution	31	26	0
Simulation	13	0	0
Recoil	54	49	0
Lepton ID	10	7	0
Backgrounds	32	33	0
p _T (W)	7	7	7
PDF	16	17	16
QED	8	1	1
W mass	9	9	9
Total systematic	78	70	23
Statistical	60	67	0
Total	98	97	23

 $\Delta\Gamma$ w [CDF(e+ μ)] = 71 MeV

 $\Delta\Gamma$ w [DØ (e)] = 142 MeV

World Averages

CDF now has most precise single experiment measurements of the W boson mass and width

Reducing world average uncertainty from 33→25 MeV

Impact on Higgs

$M_h < 142 \text{ GeV at } 95\% \text{ CL } (cf 166 \text{ GeV at ICHEP } 2006)$

Future Prospects

- from a year ago

Beware extrapolations - for M_W & M_t Tevatron has done better than expected.

1 GeV is possible for top mass and 20-25 MeV for W mass

These measurements could pin down the SM Higgs beautifully or rule it out!

Conclusions

- We've now seen all expected SM EWK processes except ZZ, single top and the Higgs
- -The precision of many of these measurements is now surpassing LEP e.g. $ZZ\gamma$ TGC, Mw, Γ w & will continue to improve as datasets grow by up to a factor of 10.
- Valuable constraints within SM e.g. PDFs and NNLO QCD will come with final datasets.
- Future prospects are bright for removing the wriggle room of the Higgs from
 25 MeV W mass measurement.

Backup

36

Physics In Collision : Annecy : 27 June 2007 Mark Lancaster : W & Z Physics

BFKL Effect on Z p_T

- LHC data on this will be very interesting

